The 3 Subatech researchers participated in articles published in the online magazine L'Actualité chimique (march-april 2021)

V1 Actu chimique 2021 460 461 couv

 

Radionuclides in the environment: societal and scientific challenges
Sub-theme : Ionising radiation and radioelements...
Key-words : Radionuclides, environment, speciation, effects, interdisciplinarity
By Mirella Del Nero , Gilles Montavon (Subatech)
Researches on the behaviour of natural and artificial radionuclides (RN) in the environment aim to assess, predict or reduce the transfers and the effects of RN (as related to their speciation) in natural systems, and intersect several societal issues : safety of future storage sites of high-level radioactive wastes, management of technologicallyenhanced naturally occurring radioactive sites.
In these contexts, the academic community positions on fundamental research around major issues (database on RN chemistry in solution and interfaces, evaluation of lowdose effects, remediation processes) as well as cross-cutting issues (modelling, state-of-the-art instrumentation). Challenges for the future are to develop multi-scale and interdisciplinary studies, which is illustrated in this article by studies on the fate of RN at the site of an old uranium mine (Rophin, Puy-de-Dôme) and the role of natural organic matter.

Theoretical radiochemistry: from the interpretation to the prediction of experiments
Sub-theme : Ionising radiation and radioelements...
Key-words : Radiochemistry, theory, methods, electronic structure, molecular dynamics
By Rémi Maurice (Subatech) , Eléonor Acher , Nicolas Galland , Dominique Guillaumont , Florent Réal , Éric Renault , Jérôme Roques , André Severo Pereira Gomes , Bruno Siberchicot , Valérie Vallet
Molecular radiochemistry is being developed for different fields of application, such as fundamental chemistry, environment, nuclear safety, and even health. Electronic structure and/or molecular dynamics calculations allow a detailed understanding of the underlying physico-chemical phenomena, and are most often added to experimental data.
This article presents recent examples from the French scientific community to show the issues and difficulties of the theoretical studies, as well as the main challenges for the coming years.

How can radioactivity cure people?
Sub-theme : …that interact with living things and to treat
Key-words : Radiochemistry, nuclear physics, radionuclides, imaging, therapy, nuclear medicine
By Cyrille Alliot , Ferid Haddad (Subatech - Arronax)
Nuclear medicine uses radionuclides for applications in imaging (positrons or γ emitters) and in therapy (α, β- and Auger electrons emitters). Most of the radionuclides used in this context are produced artificially and require the knowledge of many aspects of nuclear physics and radiochemistry to be able to achieve the expected purity for necessary activities.
Through the example of the production at the ARRONAX cyclotron, this article presents the entire production chain for medical radionuclides, emphasizing the constraints of physics and presenting the panorama of chemical techniques used.

Presque 10 ans après la catastrophe nucléaire de Fukushima Daiichi au Japon (mars 2011), une étude internationale, à laquelle a collaboré le laboratoire SUBATECH, vient faire la lumière sur les petites quantités de plutonium libérées dans l’atmosphère par les réacteurs endommagés de la centrale. Les résultats ont récemment été publiés dans la revue "Science of the Total Environment".
L'étude à laquelle ont participé des scientifiques du Japon, de la Finlande, de la France, de la Suisse, du Royaume-Uni et des États-Unis, était dirigée par le Dr Satoshi Utsunomiya et l'étudiant Eitaro Kurihara (département de chimie de l'université de Kyushu).
Leurs travaux ont montré que le Pu était inclus dans les microparticules (CsMP) riches en radio-césium (Cs134/Cs137, un produit de fission volatil formé dans les réacteurs) qui étaient émises dans l’accident. Les CsMPs sont des particules radioactives microscopiques qui se sont formées à l'intérieur des réacteurs de Fukushima lorsque le combustible nucléaire en fusion a interagi avec le béton structurel du réacteur. En raison de la perte de confinement dans les réacteurs, les particules ont été libérées dans l'atmosphère ; beaucoup se sont ensuite déposées sur les sols sur une distance de quelques centaines des kilomètres des centrales. Des études ont montré que les CsMP sont incroyablement radioactives et qu'elles sont principalement composées de verre (la silice provenant du béton) et de radio-césium. Bien que l'impact environnemental et la répartition des CsMP soient toujours un sujet de débat actif, il a été démontré que l'étude de la composition chimique des CsMP offre un aperçu très nécessaire de la nature et de l'étendue des fusions des centrales nucléaires à Fukushima.
Le professeur Grambow, co-auteur de l’étude de SUBATECH, déclare que si le rejet de Pu des réacteurs endommagés est faible comparé à celui des Cs, l'enquête fournit des informations cruciales pour étudier l'impact sanitaire associé.
Le Dr Utsunomiya a précisé qu'il avait fallu beaucoup de temps pour publier les résultats sur le Pu particulaire de Fukushima en soulignant qu'il s'agissait là d'une grande réussite de la collaboration internationale. "Cela fait presque dix ans depuis la catastrophe nucléaire de Fukushima, mais les recherches sur l'impact environnemental de Fukushima et son démantèlement sont loin d'être terminées".

NOTE 1 : L'intégration des techniques analytiques de pointe a été réalisée grâce à un réseau international mondial qui comprenait l'université de Kyushu, l'université de Tsukuba, l'institut de technologie de Tokyo, l'institut national de recherche polaire, l'université d'Helsinki, l'institut Paul Scherrer, Diamond Light Source,, SUBATECH (IMT Atlantique, CNRS, Université de Nantes) et l'Université de Stanford.
NOTE 2: En codirection avec le CEA de Cadarache, depuis avril 2020, SUBATECH a lancé une thèse doctorale expérimentale au sujet de mécanismes qui gouvernent la production des CsMP dans la fusion du cœur d'un réacteur nucléaire.

Accès à la publication : https://doi.org/10.1016/j.scitotenv.2020.140539

Image SEM 3